ELEMENTARY THEORY OF CONCENTRATED DISPERSED SYSTEMS

M. A. Gol'dshtik and B. N, Kozlov UDC 532.529.5+539.21

A closed system of equations is derived for the energy flux, and the boundary conditions are
given. The transport coefficients and other parameters are found from elementary gaskine-
tic considerations for a high concentration of the solid phase. As an example, the solution
is found for the problem of an "adiabatic" Couette flow for a granulated medium.

1. The hydrodynamics of multiphase systems does not yet have a satisfactory theoretical basis de-
spite the fact that it is of wide practical application and that a very considerable amount of experimental
data has been accumulated [1]. The averaged equations of motion of two-phase streams are not closed and
can be applied to nonuniform flows provided that the dimensions of the elements in the dispersed phase are
much smaller than the characteristic size of the channel or boundary layer.

The equations of averaged motion of the phases can be obtained in closed form if the interaction mech-
anism is known. Two limiting situations can be distinguished: the concentration of the dispersed phase is
small, and its elements interact only with the carrier medium (gas, liquid); the concentration of the dispersed
phase is close to maximum, and the movements of the elements have an order which is significantly smaller
than their characteristic size.

It is the latter type of system that we consider in this paper (a generalization of [2]). We take a two-
fluid model described by the phenomenological hydrodynamic equations in which the transport coefficients
and other quantities are derived from elementary kinetic considerations. These considerations are approx-
imate but they do allow the principal relations to be understood and do reflect the main properties of the
various phenomena.

We follow a method in which the two phases are described separately and their interaction is taken
into account by means of a body force F,. Since the size of the solid particles is taken to be much smaller
than the characteristic dimensions of the flow and since their concentration is considerable, the gradient
of the "averaged" velocity of the fluid is negligibly small in comparison with the local gradients near the
particles and so the equations of motion of the fluid can be written in the Euler form

. (1’1‘1. B . ap .
e — = F; —ax{ - 08g; (1.1)
d(e) . eer)
o == 0 (1.2)

1

The force F; which acts on the stream from the particles is greater than the Stokes term in order of
magnitude. Here p is the density of the fluid. € is the porosity (fraction of the fluid in unit volume), p is
the pressure of the fluid phase, g; is the acceleration due to mechanical forces, t is thetime, and y is the
average velocity of the fluid, which is related to the velocity in an empty cross section vy; by the equation
Voi = &Y.

For the solid phase, the equations of motion are

aT,.
i 8:(.':" - ostgi (1.3)
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where Py is the density of the solid phase material, 7 = 1— € is the volume concentration of the solid phase,
w; is the average flow speed of this phase, and T;; is the stress tensor in the solid phase considered as a
continuous medium and reflects the interaction othhe solid phase particles.

We consider the solid phase to consist of identical spheres of diameter d. The number of particles
in unit volume n = 67/7d°. Of the forces acting on a particle from the fluid phase. we consider the hydraulic
resistance and the transverse Magnus force which acts for a flow round a rotating sphere. We can thus
write

W olu ad? 9 add - -
3 o|uf p 4 (1.5)

Here ¢ is the hydraulic resistance coefficient of a particle, w is the angular velocity vector, uj
= 8¢'1(vi - Wi) is the maximum flow velocity past the particle as defined by the minimum relative transfer
cross section ¢. The expression for the Magnus force has been obtained in [3],and ¢ = 1— 1.17 72/3 |2],
W = £¢! lvi — Wi) is the average flow velocity round a particle. The approximate relationship ¢ = 1.09-.
1 —J2/3) canbe obtainedby a method similar to that used in [2] for calculating ¢.

We assume in the calculation of F; that the vector w for the particles in unit volume is randomly di-
rected and that therefore the Magnus force, being an internal one, does not enter the momentum equations.
Thus

Fi=n{f .--%;(;Mu[ui——r—g% (1.6)
Equation (1.1) now becomes
v op 3 Lt
pJT"_—E—TFWIU" (1.7

By comparing (1.7) and (1.1), we can decide about the necessity of including the factor € in front of
op/ax;.

In order to determine the tensor T,,. we assume that the system of particles can be considered as a
fluid which satisfies the Stokes postulates [4]. We can then write for Tij the general expression [4]

Tij = —pLb; + uDy; — 1Dy Dy; (D = dw,idx; = Dwjldz) (1.8)

where D;; is the strain rate tensor, p°g, &, v, are scalars which depend on the thermodynamic parameters
and the invariants of Dij- We introduce the quantity pg= —1/3 (Tﬁ+ Y Dikz)’ which represent the analog of
the hydrostatic pressure for a system of particles. Expression (1.8) becomes

dw

2 .
Ti;=— (Ps 4 5n 7,7"} b8ij Dy — 7DDy (1.9)
L$

We assume that as with a normal gas the system has no "memory." i.e., we neglect such effects as
second viscosity. This is justified by the fact that the particles do not have internal degrees of freedom
except rotational ones and these are considered to be rapidly relaxing.

In order to determine the quantities Py s and v, we take a more definite model of the medium and
consider the solid phase as a gas of solid spheres. The distance between particles Twas found in [2] as
! = d[7,/1"3~ 1] on the assumption of similarity between nondense packing with density 7 and some "stand-
ard" dense packing of density 7,.

The particles in the dispersion medium have some "average" motion and also possess random velo-
cities. For a sufficiently dense medium with l<d, a particle can only collide with nearest neighbors and
the remaining particles are inaccessible (the phenomenon of "screening”), The mean free path of a particle
~2l and the time between collisions t~ 2//cV3, where c is the random velocity of the particles appropriate
to one degree of freedom.

The collision time of two spheres is determined by the speed of sound c¢*in the material of the
spheres and is equal in order of magnitude to t*~ 2d/c* thus the fraction of spheres in a collision state is
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(for ¢ < ¢¥)
A y’?liL

‘32 Tt c*

and the fraction of spheres in third- or higher-order collisions is given in order of magnitude by

3, 9 (ric*)t
g 28,3 = 33,2 = ————— {1.10
3 5 B, 32 [ 1] 10)
The use of the gas model presuppo ses that
Bs<< 1 (1.11)

Thus multiple collisions, and hence collective effects, can be neglected.
By concentrated systems we mean those for which

1]d = (tg/ 0% —1 <1 (1.12)

(with 7> 0.075).

Because of the high value of c* there is a wide range of concentrations for which (1.11) and (1.12) are
satisfied simultaneously. Further analysis will refer to this region and, in particular cases, to the region
ldz=1.

Because of the screening effect, the kinetic coefficients can be calculated from a model consisting
simply of two layers of particles situated at a distance [ +d from each other. The first layer can be taken
as fixed and the second as moving with an average velocity Aw. The particles in the layers also have a
vertical velocity ¢ connected with the random motion.

The number of particles entering unit area of a layer

6t T i,
7 I-, ’173/'I

n(l —d)—=

An error is made in [2] at this point but it has little effect on the quantitative results. One sphere of mass
m undergoes c/2l collisions in unit time. The total number of spheres crossing unit area in unit time is

.N=3CT,/T[(13T|, T]=1—(T/Tg)l'3
so that the momentum transmitted normally through unit area of surface in unit time is
Ps = 2me N = pyeit [y (1.13)

This relationship is the same as the equation of state of a dense gas of solid spheres (5]. It has been
confirmed experimentally by A. Ya. Geiler in his thesis for the case of a fluidized bed.

The value of the viscosity u can be determined by calculating the transport of the horizontal compon-
ent of momentum from the second layer to the first

Ty = N (mwy — mw,) — =
where T is the tangential stress and y is the coordinate perpendicular to the collision plane. Thus
no= ‘/2 Pst r(l)'"r:’, n = 0.422 pscd s m (114)

In order to define the parameter y which occurs in (1,9), we consider the term VDikaj' Suppose
that there is a purely shear plane flow with dw/dy = 1. Then

01 104
Dy ={y o) Duli={g4)

It thus follows that the term VDikaj produces normal stresses under the action of a shear. If there
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is relative motion between the layers the spheres will roll over one

av |
3 A another and this will lead to a "bursting" force.
#lc l In order to make a guantitative estimate of this effect, we consider
a hemisphere from the first layer (Fig. 1). In the absence of shear,
| a particle arriving at the point M moves along the vertical AM with
] velocity c. If there is a shear velocity Aw, the particle trajectory

2 deviates from the vertical by an angle g, but the vertical component
' of velocity retains its value so that w cos 8 = ¢. The vertical moment-
um transmitted by the particle to the hemisphere

ig = mw [cos B 4 cos (2a — B)] = mc [1 .08 (22— B)]

cos 3

Fig. 1
We now calculate the excess momentum caused by the shear
iy — iy = mesin 2a tg P
At the symmetrical point M', which is characterized by the angle —«, the result of the shear is equal
in magnitude but opposite in sign. The numbers of particles arriving at the points M and M' in unit time
are different in the presence of shear. For the point M the number is proportional to cos (a— ) and for

the point M',to cos (@ + ). The total excess momentum for M and M' is proportional to the difference
cos (@ —B)—cos(e+ B} = 2 sin @-sin B. Thus for unit area we get

o,

*
o Nme o) s o _ Pe o —Yygsindx .
Apg — Py auS sin2atgp2sinusinBeos ada — R TT— tgBsin3
0
where o is the limiting value of a defined by
/ N\
sine, = 4d_ | ' To ':"’ (1.15)

Now

sinB=~tgp = %i.—.%%(lﬁ-d)

Assuming T to be close to T, and using (1.15), we get ay= 7/6+x, where x is a small parameter.
Limiting ourselves to the first powers in the expansion, we have

—-
-~

~

>

3 [t ",z:‘1 .
Ap, =~ 33 Ps VT {arc sin [— (‘T/]

whence

~ 0.019 p, d2 / ¢? (1.16)

The value of ¥ > 0. This corresponds to the action of a "bursting" force in the same direction as the
pressure. It can be seen from (1.16) that the term VDikaj becomes comparable with P when dw/dy > cAd,
i.e., only under extremely nonequilibrium conditions.

2. In order to set up the energy balance in some particular volume, we have to remember that the
internal energy of random motion is generated not only from dissipation of the average motion, but also as
a result of the Magnus forces which are of an internal nature. There is also a decrease of the internal
energy as a result of conversion into thermal energy through friction of the particles with the fluid and
through inelastic interparticle collision. The energy balance equation must also allow for energy transfer
through mechanical "thermal conductivity."

We define the total energy of the solid phase moving in a volume V as the sum of the kinetic K and
internal U energies:

K= %& orwtdV, U -- §pstdv
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where E is the internal energy per unit mass.

We now apply to the volume V the law of conservation of energy of the solid phase; the change in the
total energy of the system must be equal to the work done by external and internal forces plus the energy
applied to the system or derived from it. Thus

LB ‘S(Fiwi + petgas + Qu — Op)dV + \(Tiw; — g:)dS, (2.)
S

Here Qp, and Qg are the powers of the dissipation and Magnus forces per unit volume and q; is the
energy flux vector for the random motion.

If we convolve (1.3) with w; and integrate over the volume V. then after some standard transformations
we get

.t
(% - \(\Fiwa - O T8 — IuDll av 1‘\ 1518,
v 5

The energy equation (2.1) becomes

dl >/ 1 . v
el ‘>!‘QM_ Uo +T7i;’1)u‘l¢ dv '—§qidsi (2.2)

We now transform the surface integral to a volume integral and use the equation

d dE
-d—l- )I'HV \p —dl

"e

(the volume V is arbitrary) and get from (2.2) that

ﬁqi .
= Qy— Up .'—2— iDij_b_;i (2.3)

The internal energy H of one particle consists of the energy of three translational and three rotational
degrees of freedom. The vertical component of the random velocity has been taken as c and so the energy
in this degree of freedom is 1/2 mc?. For a conservative system in equilibrium, the energy is equally dis-
tributed over the degrees of freedom [6]. We thus take H= (34 3) mc%2= 3 mc?, whence E = Hm = 3 c’.

From equipartition of energy it follows that
me? == Yy mde?, o =Y 10cd (2.4)

where « is the rms component of the angular velocity of a particle.

We now estimate the power of the Magnus forces Q‘VI' The Magnus force acting on one particle is
defined by the last term in(1.5), and so Qyp = 207 |u. wljc;. The value of Qy, depends on the relative orient-
ation of the vectors u;, «;. and ¢;. For a rough estlmate of the effect, we take the angles between u; and w;
and between [u, wl; and ¢; as equal to /4. If we take the length of the vector c; as ¥3c¢c we can use (2 4) to
get

Op =V 30 prezu/d

The coefficient V?ﬁis only an estimate and it should be subsequently refined, for example, experi-
mentally.

The power of the internal energy dissipation Qpy is made up of several parts. It is shown in [2] that
dissipation over a mean f{ree path can be neglected. The main dissipative processes are connected with
collision effects.

Consider first the friction during a collision. Suppose that a collision occurs between two spheres
with different velocities moving in opposite directions. The spheres are supposed to be nonrotating
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before the collision. We suppose that in the collision process the slip of the spheres past one another
ceases altogether. Asin the case of the impact of a sphere against a fixed plane [7], we have the relation-
ships

_ N _ 10 1y
wy = ¥ Wi o = 1), d7wy,

where w, is the tangential component of velocity of each sphere; the suffix 0 refers to the state hefore the
collision and the suffix 1 to the state after. If the impact is elastic, then w, ;= —w,,. The initial kinetic
energy of each sphere hy = % m (w®+ wy’), and after the collision
by = I-;—L(w'l? - wt) ‘I%ﬁ‘ = % mug® - -:‘12—-”“%02
If we take Wo = C, then each sphere loses an energy mc¥/7 in the collision and an amount 2/7 me? is
converted into heat. The time between collisions of a single sphere is 2l/c v3. The sphere thus undergoes
cv3/21 collisions per unit time. The total number of collisions per unit time per unit volume is

_leys et 3Y3
T2 T2 ad® T 2 mdd

If the dissipation is caused only by impact friction then

If the spheres are smooth and inelastic,
Ah =1 — &%) mc?

where k is the coefficient of restitution and the dissipative losses per unit volume are

T

=

LA I R Y SN S
QD -7z (1 k )Ds d (T.\,"T)l‘“ 1

In the general case we can take

QD = 30, * i (2.5)

I (t—m‘.ﬂl, 1

where to the first approximation

This parameter can be considered as a characteristic of the material of the spheres which must be
determined by experiment. A more detailed consideration leads to a weak dependence on the concentration
7. The hydrodynamic perturbations caused by the particle collisions also make a contribution to Q. When
two particles approach each other they communicate kinetic energy to the mass of the liquid between them.
This energy is dissipated. The problem of the collision of two spheres is difficult to solve even for the
case of an ideal fluid. The loss of energy must be of the order of pc? (with a coefficient of the order of
unity). The ratio of the hydrodynamic to the impact dissipation is therefore of the order of p/pS for a sys-
tem of solid particles suspended in agas, and so the hydrodynamic dissipation can be neglected.

The term (]/2)Ti-Di- in (2.3) characterizes the work done in expanding the gas of solid spheres and
the dissipation of the energy of average motion. The last term in (2.3) corresponds to thermal conductivity.

2

Suppose that the layers of spheres have different values of H = 3mc®. Then the transfer of this quan-

tity from layer to layer is given by

r 14
¢ =N —H)~ - NG +d)

whence

oF
dz,

g = — L L = p =~ 0.422p cdv' 3/ (2.6)

L]
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and the Prandtl number Pr = /L= 1,

We have thus obtained a closed system of equations which describe the behavior of concentrated dis-
persed systems. If the fluid phase is incompressible, then 7, v;, p. %. P, and ¢ are unknowns. They can
be determined from (1.1)-(1.4), (1.13), and (2.3}, For a compressible fluid phase the system must be sup-
plemented by the equations of state and energy for the fluid phase. For an ideal gas these equations are

0 T
p—PRT, pecy g =vigh viFi+7,;i—(xa—ri)+0 2.7)

where R is the universal gas constant, cp is the specific heat at constant pressure, T is the absolute temp-
erature, A is the thermal conductivity of thegas, and Q is the heat obtained by the gas from the solid phase.
Using (1.6) and (1.7). we can represent the second equation in (2.7) as

p (e + 4 ) -(’-‘I’—(;ZTP) (2.8)

\

If thermal processes are important in the dispersed system (for example if an amount of heat Q
produced in the solid phase), then the thermal balance equation must be written down for the solid phase

T, 2 ar,
DsTCs — == Qp— 0+ g;i—(i\ ‘E) (2.9)

[¢

where Cg and T are the thermal capacity and temperature of the solid phase, A is the diffusion conductivity
{which 1s quite lmportant in a number of cases [8]). The quantity Qp includes the dissipative heat Qp. For
convective thermal exchange

Q=06twda(T, —T)

where « is the heat transfer coefficient.

3. The boundary conditions for the parameters characterizing the fluid phase are formulated in the
standard way for hydrodynamics.

The boundary conditions for the solid phase are determined by the perturbations experienced by a
solid surface Splaced in the particle stream. On this surface Swe have the condition that no particles can
penetrate ie. “'nls = W, where W, is the velocity of motion of an element of S; if the surface is stationary
then w, ; : 0. The motion of the particles along a wall can take place with a significant slip velocity 6.

The partlcles acquire significant angular velocities from collisions with the wall and also translational
velocities relative to the layer. This produces a loss of a considerable fraction of the tangential momentum
by the particles and increases the internal energy of the layer.

The wall has an ordering effect on the adjacent layer of particles and causes local changes in the
porosity. However, this effect is outside the scope of the present paper, which is based on the assumption
that there is total disorder in the particle positions.

We now consider the impact of a particle on the wall, assuming this impact to be elastic. Since the
angular velocity of the particles inside the layer is on average equal to zero, we take the spheresto be
nonrotating before the collision. The loss in the tangential momentum of a particle is then [7]

HamB  (0/7c < )

2fme  (®fic>= ) 3.9

mAw, — {

where / is the coefficient of sliding friction at the surface; the case /7 c=f corresponds to the cessation
of slip. For the angular velocity we have

]
od —= ; (3.2)
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Multiplying (3.1 by N, we get the tangential stress at the wall

¢ = S8R @iTes) 3.3
ips 0/Tc21)

The tangential stress varies continuously with the quantity 6/7c. When 6/7c=/ the stress depends lin-
early on § as is characteristic of fluid friction. When 6fc=f the stress becomes constant, i.e., the dry
friction law holds. The discontinuity in (3.3) is due to the elementary treatment which assumes that the
quantity @/7c is the same for all spheres and that the initial angular velocity is zero. If the particle dis-
tributions in linear and angular velocity are taken to be Maxwellian (for example) the relationship becomes
a smooth one.

The derivation of (3.3) ignored the velocity gradient in the layer which, when the term 'yDikaj is in-
cluded in (1.9), produces an additional normal stress. In general (3.3) should be replaced by

0/7c /7<)

Ty=-tT., &= ‘f ©/7e> 1) (3.4

Here T, is the total normal stress at the wall. The boundary condition for the tangential component
of velocity allowing for the particular law of friction at the surface) can be found by equating the quantity
T, from (3.4) to the tangential stress derived from (1.9).

The boundary conditions for the internal energy E depend on the properties of the particles and the
wall. The wall might, for example, generate energy by vibration, or absorb it.

An additional energy flux, connected with the conversion of part of the energy of ordered motion at
the wall into random motion, can be found in the form

maw 2 Tw? 1 T g9 .
g, — (__Z_'_ 4._2._)N:Tp571§c" (3.5)

The boundary conditions for the energy equation including (3.5) in the absence of other processes at
the wall can be found by equating the right sides of (3.5) and (2.6).

The power of the surface forces -S[I‘ijwjdsi, which is included in (2.1}, does not affect the internal

energy balance as it does not occur in (2.2).

4, The particular case is considered in (2] of a dispersed system in which the solid phase has no
average motion. Since D;; = 0, the equation of motion of the solid phase simplifies and reduces to the con-
dition for hydrostatic equilibrium. The energy equation reduces to Qy = Qp. A particular property of this
type of system (a model of a fluidized bed) is the liquid—vapor phase transition.

We consider now another example — the analog of a plane Couette flow for a granulated material in
which there is no fluid phase (¢ = 0). When a viscous gas flows between two parallel walls which are moving
with the same speed in opposite dircctions the frictional heat must be taken away through the walls in order
for stationary conditions to exist. Because of the presence of a sink of internal energy in the form of the
dissipated power QD’ adiabatic conditions are possible (qls=0), and these are considered below.

We look for solutions with constant values for the velocity gradient dwdy = a, the internal energy E,
and the pressure pg. Equation (1.9) gives

, 1Oy oy
i = —(ps +-7a) (\0 1) a 10/

It thus follows that

Tw = ps +va% Ty:- pa (4.2
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Snce 14 T;;Dj;= pa?, the energy equation (2.3) reduces to Qp = Ha®. Using (2.5) and (1.14), we get
a2d? - 33_-c2r*.~, ad = V‘E ct's (4.2)
Ty ? To'®

We now use (3.4), substituting (4.1 into it. With (1.13), (1.14), and (1.16), we get
. S0 AN P T .
£ ]/T[i 0,0385(K} ]N]/ : (4.3)

For elastic rough spheres we have ¢ = v3/14, £ = 0.25,

Thus for this Couette flow ¢ is a constant number. If the coefficient of friction f >¢, then from (3.4)
6/7c = £. and this expression defines the jump in velocity at the flow boundary. A gradient flow is impossi-
ble for /<4 . When there is no external force field a normal pressure is produced only by a "thermal®” ex-
pansion of the layer,and it is possible to get the trivial solution ¢ = 0, Tij = 0, @ = 0. The planes freely
slide over the particle layer without any interaction. A nontrivial solution exists only for f>£. Then 6
= 7¢c. Suppose that the relative velocity of the plates is given as wy= ab+ 2{c, where b is the width of the
layer. Solving this equation together with (4.2) and using (4.3), we get

The quantity 7 in this problem must be given. The tangential stress arising at the plates as they
move is

. Pr 1w
(7 4 q A

The results which have been obtained are in qualitative agreement with experiment. Suppose that a
granulated material is placed between two cylinders of which the inside one rotates and the outer one is
fixed. If the internal cylinder is smooth, the layer does not affect the rotation. The motion of the granu-
lated material begins only when the inside cylinder becomes sufficiently rough.

The authors are grateful to S. S. Kutateladze for a discussion of this work.
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